
Center-Point-Based Simulated Annealing

Ali Esmailzadeh, IEEE Member, Shahryar Rahnamayan, IEEE Member

Abstract—The S-metaheuristic algorithms work with a single
candidate-solution during the search process. That is why they
are prone to be trapped in local optima. Many research has
being conducted to speed up and also minimize their premature
convergence. The Center-point Sampling was introduced by
Rahnamayan and Wang in 2008. Based on their experiments,
it has shown increase in probability of closeness of the unique
point in the center of the search space, to an unknown solution,
as the dimensionality of the problem increases. It means, the
center is an exceptional point to be used as initial point, specially
during solving large-scale black-box problems. In this paper, we
investigate this phenomena on Simulated Annealing (SA). The
purpose is to accelerate the convergence speed of the algorithm
by using the center point as an initial point for SA algorithm.
This modified version, called Center-Point-Based SA (CSA), is a
very simple and effective idea to enhance SA. The experimental
verifications are provided on seven shifted large-scale (i.e.,
D=300) benchmark functions to show improvements achieved
by the CSA algorithm. Using the shifted version of the functions
ensures there is no bias towards the center, and so towards CSA
algorithm. The results confirm that CSA outperforms parent
SA algorithm in overall.

Index Terms—S-Metaheuristic, Simulated Annealing,
Center-based Sampling, Large Scale Optimization.

I. INTRODUCTION

The S-metaheuristic algorithms, unlike P-metaheuristic
algorithms, are single-solution-based algorithms which con-
sider a single candidate-solution in the search space to solve a
problem. That is why, they are more prone to getting trapped
in local optima, specially on multi-modal and complicated
landscapes, as a result, they converge prematurely. Many
research has been conducted to improve S-metaheuristic
algorithms such that they do not get trapped easily or can
escape. Therefore, the initial candidate-solution which is used
to solve a problem in a S-metaheuristic algorithm is very
important, as well, it is important to guide the candidate
through the landscape such that it does not get trapped.
The Simulated Annealing (SA) algorithm was introduced

by Kirkpatrick et al. in 1983 [7], as well, by Cerny [8], in
two independent works. It is a S-metaheuristic algorithm that
starts from an initial candidate-solution and by generating
and selecting neighbors, it keeps moving on the landscape
until it finds the solution. There has been some research done
to improve the neighbor generation of SA. The neighbor
generation of SA algorithm was modified in an algorithm
introduced by Ventresca et al. [1], called Opposition-Based

Faculty of Engineering and Applied Science, University of Ontario
Institute of Technology (UOIT), 2000 Simcoe Street North, Oshawa,
Ontario, L1H 7K4, Canada (phone: 1-(905)-721-8668 ext. 3843, fax: 1-
(905)-721-3178, emails: (corresponding author) ali.esmailzadeh@uoit.ca;
shahryar.rahnamayan@uoit.ca).

Simulated Annealing (OSA). It was based on the Opposition-
Based Learning (OBL) concept proposed by Tizhoosh in
2005 [2]. For OSA [1], when a new neighbor is generated,
the corresponding opposite neighbor is considered and the
fitter point survives as the new current point. It was shown
that OSA outperformed SA on majority of tested benchmark
functions.
An improved and efficient SA algorithm was introduced

and utilized by Ji-Yang [3], in which it modifies the search
process such that it is no longer memory-less process. By
adding memory to the search process of original SA, the
improved algorithm keeps track of which neighbors have
already been searched, and it will not search those again,
similar to the Tabu Search (TS) algorithm. This addition
to SA improves the efficiency and solution found of the
algorithm.
An adaptive simulated annealing (ASA) was introduced

by Youhua et al. [4], in which the temperature decrease (i.e.,
cooling schedule) of the SA algorithm is adaptive based on
the current results of the algorithm.
In another work, Xinchao introduced Simulated anneal-

ing algorithm with adaptive neighborhood [5], which the
neighborhood coverage is adaptive. During exploration, the
coverage area is wider and covers the entire search space,
but during exploitation it gets smaller adaptively.
In this paper, instead of working on the neighbor genera-

tion component of SA, we define a new and simple strategy
for the initializing starting point of SA, but this idea can
be investigated on any other S-metaheuristic algorithm. We
verify our proposed approach by conducting experiments
on seven shifted large scale benchmark functions. We have
decided to test the method on shifted benchmark functions,
so that there is no bias towards the center as well as the
proposed algorithm.
The rest of this paper is organized as follows: in Section

II, the concept of Center-Point Sampling is reviewed and
discussed. The proposed Center-Point-Based Simulated An-
nealing is presented in Section III. The experimental results
and analysis are given in Section IV. Finally, the work is
concluded in Section V.

II. CENTER-POINT SAMPLING: A REVIEW
In this section, we review and explain the Center-Point

sampling. It was introduced by Rahnamayan and Wang in
2009 [11]. They investigated the closeness of points in a
search space from an unknown solution (black-box problem).
They measured the Euclidean distances of the points to the
unknown solution for the different dimensions. They utilized
Monte-Carlo simulation by dividing the [a,b] search space
interval into partitions of 10−3 step-sizes, to represent a fixed

2012 25th IEEE Canadian Conference on Electrical and Computer Engineering (CCECE)
978-1-4673-1433-6/12/$31.00 ©2012 IEEE

point in a given calculation. For each fixed-point, x, in each
dimension (1, 2, 3, ..., D), they repeat the following steps 106

times (i.e. trials) in order to get measurable results:
1) Generate a uniform-random point, r, and a random
unknown-solution, s, in the search space [a,b].

2) Measure the Euclidean distance of the fixed-point and
the uniform-random point, from the unknown-solution.

3) Depending on which distance measure is smaller, the
appropriate distance variables are updated for calculat-
ing the average distance and probability of closeness,
at the end of the 106 trials.

By Monte-Carlo simulations, they have found that the
probability of points being closer to an unknown solution
(in comparison to uniformly generated points over the entire
space) is much greater towards the center of the search space.
Given the interval of search space as [a,b], shown in Fig. 1,
the center of the interval is formulated by Eq. 1 and Eq. 2,
for dimensions 1 and n, as follows:
For 1D:

c =
(a + b)

2
(1)

For n-D:
ci =

(ai + bi)
2

(2)

where i = 1, ..., D and D is the dimension of the problem.

Fig. 1. The visual illustration (in 1D) of uniform-random point, x, and the
unknown-solution, s, in the interval [a,b], where c indicates corresponding
center of the search space, c=(a+b)/2.

The authors observed that as the candidate-solutions gets
closer to the center of the search space, the probability
of closeness to the unknown solution increases drastically.
Furthermore, they examined this phenomenon to solve high-
dimensional problems [11]. Interestingly, as the dimension-
ality of the problem increases, the probability of closeness to
the solution improves as well. They experimented this con-
cept for large dimensions of 100, 200, 500 and 1000. Even
for low dimension of one, the probability of closeness to the
solution is greater around the center-point. The probability
graph is shown in Fig. 2.
Furthermore, the matchable improvements near the center-

point can be seen with regards to the average distance of
candidate-solutions to an unknown solution. In the Fig. 3,
it can be seen that as the dimensionality of the problem
increases, the average distance of candidate-solutions near
and on the center-point decreases to very low values, close
to 0.
The probability of closeness of center-point to an unknown

solution has the highest value, as shown in Fig. 4.
In this section, we will try to intuitively explain the

findings of [11]. The simulation results in [11], as reviewed
in this section, indicate that the center of a search space
is, on average, the closest to the unknown-solution. Even

Fig. 2. The graphs of Monte-Carlo simulations which present the
probability of closeness of candidate-solution to an unknown solution in
the interval [a,b], for different dimensions [11].

Fig. 3. The graphs of Monte-Carlo simulations which present the average
distance of candidate solution to an unknown solution in the interval [a,b],
for different high dimensions [11].

though this is a novel concept and it has been justified by
Monte-Carlo simulations, it still has to be justified intuitively.
According to Fig. 1, c is the middle of the search space,
which has divided the entire search interval of [a,b] into equal
(symmetric) sub-intervals of [a,c] and [c,b]. The candidate-
solution x, and unknown solution s, can each be in different
sub-intervals, or they can both be in the same sub-interval.
The chances of either of the previous cases are 50% since
we are dealing with uniform-random. For the former case,
since c is in between x and s, no matter which sub-interval
s belongs to, the Euclidean distance of x and c to s is
|x − s| ≥ |c − s|. Therefore, on average, in 50% of the
times, c is always closer to s, than x is to s. Therefore,
on 50% of the times, c is closer to the unknown solution.
For the rest of the probability, where x and s are in the
same sub-interval, then x and c are competing together for

Fig. 4. The graphs of Monte-Carlo simulations which present the proba-
bility of closeness of center-point to an unknown solution, for dimensions
of 1 to 35 [11].

closeness to s. Therefore, any probability of c closer to s in
this scenario, along with the 50% chance in the first scenario,
will only help increasing the chances of c being closer to s,
in overall. Furthermore, the same probability of closeness
of c to s can be applied for the other dimensions of a D
dimensional problem. Therefore, over all the dimensions, the
probability of closeness of c will be improved. That is why as
the dimensionality of the problem increases, the probability
of closeness of center increases as well, as shown in Fig. 2.
As indicated by the authors in [11], Center-point is a

unique point in the search space; therefore, it can be easily
utilized for S-metaheuristic algorithms.
In the next section, we will propose a modified SA

algorithm that combines Center-point concept and SA, in
order to investigate the effectiveness of Center-point concept
in solving large-scale optimization problems.

III. CENTER-POINT-BASED SIMULATED ANNEALING
(CSA)

In this section, we propose a simple modification to the
SA algorithm in term of the initial starting point of the
algorithm. As discussed in Section II, the Center-point is
a unique point, which has the highest probability of being
closer to the unknown solution, than any other random point
generated in the entire search space. In general, when there is
no any priori-knowledge about the problem, then start from
a uniform random point.
In this paper, we aim to utilize the Center-point concept on

a S-metaheuristic algorithm in order to accelerate its conver-
gence speed. The implementation of Center-point concept in
SA will be made at the initialization step. Therefore, in the
initial estimate phase of SA where a random guess about the
starting point on the search space has to be made, we simply
utilize Center-point as the initial starting point for the search.
In CSA, the initial starting point for the algorithm to solve
the problem will be the point c of the search space, according
to Eq. 2, with respect to each dimension.

We aim to not change the classical SA algorithm compo-
nents for the center-point version (CSA). We do not utilize
the Center-point concept during neighbor generation of SA.
Simply, instead of generating a uniform random point on
search space as an initial point for SA, we pick the center of
the search space. The rest of the SA search process is then
carried out followed with the center-point initial candidate.
The complexity of the CSA algorithm is the same as its
parent, SA algorithm because O(1) is the complexity for
finding the center of the search space.
Although this is a very simple idea, the intention of the

current work is to examine the effect of using initial Center-
point, to solve large-scale problems. As mentioned in Section
II, for large-scale problems Center-point showed to have very
high probability of being closer to an unknown solution.
Therefore, we intend to test the CSA method with its parent
(SA) on large-scale problems. To the best of our knowledge,
no research work has tried the center point, as oppose to
uniform-random point, as the initial starting point in the SA
algorithm. We aimed at trying this combination in order to
verify the effect of center-point, on a single-solution-based
algorithm.

IV. EXPERIMENTAL VERIFICATIONS
This section gives detailed description of the experiments

performed to verify the effectiveness of CSA

A. Control Parameter Settings

All the common parameters of SA and CSA are set to the
same values as below, in order to have a fair comparison.
• New Solution Generator: Pointcurrent+rand(1,D)/10
• Starting Temperature, Tmax=300
• Stop Temperature, TStop=1E − 8
• Cooling Schedule, T=0.95×T
• Maximum Consecutive Rejections, MaxReject=1000
• Max Success, 20
• Max Tries, 300

B. Benchmark Functions

The following benchmark functions are bound constrained
high-dimensional benchmark functions for minimization as
provided by the CEC’2008 Special Session on Large Scale
Global Optimization [10]. The benchmark functions used in
this paper are the ones used in [9] for large-scale problems.
The functions f1 and f2 are unimodal and the rest of the
functions are multimodal problems. Their complete list with
more details are presented in Appendix A. All functions are
randomly shifted over the search space to not have any kind
of favor for the center point of the search space. Therefore,
for none of the functions, the solution is located at the center.

C. Simulation Strategy

Similar to other research papers [1], for all conducted
experiments, trials are repeated 250 times per function. Mean
and standard deviation of the best fitness values are reported.
However, the re-sampling and thresholding techniques [12]
are not applied in this paper.

D. Simulation Results

The numerical results for SA and CSA algorithms on seven
benchmark functions are summarized in Table I.

TABLE I
MEAN ± (STANDARD DEVIATION) OF THE BEST FITNESS VALUE OF SA

COMPARED TO CSA, FOR D=300. THE BEST RESULT FOR EACH
FUNCTION IS HIGHLIGHTED IN BOLDFACE.

F SA CSA
f1 966.214± (1454.404) 241.756± (18.133)
f2 195.730± (56.980) 190.450± (1.765)
f3 0± (0) 0± (0)
f4 5032.840± (340.945) 5031.222± (130.252)
f5 62.584± (64.521) 32.278± (0.804)
f6 21.579± (0.396) 21.667± (0.390)
f7 300.804± (11.540) 301.378± (3.499)

E. Results Analysis

As indicated in the Table I, the SA and CSA algorithms
performed the same best value of 0 for function f3. As
seen, the CSA algorithm has outperformed SA on 4 out
of 7 functions, f1, f2, f4 and f5. By observing the high
standard deviations for functions f1 and f4 by SA, it could
be an indication that SA gets trapped in local optima for
those functions. On only 2 functions out of 7, SA performed
better than CSA, i.e., f6 and f7. The improvements for those
functions by SA are not by a large value, and considering
the better standard deviation values of CSA for f6 and f7,
both SA and CSA algorithms performed nearly the same on
those two functions.
Another contribution of CSA and its improvement to the

SA algorithm can be seen by the standard deviation (STD)
values of CSA compared to SA, for 6 out of 7 functions. As
it can be observed, the STD values of CSA are much lower
than SA. This indicates a higher consistency of results by
CSA, compared to SA. The higher consistency of CSA means
lower behavior fluctuation and so more accurate results.
The lower STD values and higher consistency of results
of CSA can be due to the fact that instead of starting
from a random point each time, we always start from a
fix point, the center. This has shown to be a good starting
point in previous experiments and has yield better and more
consistent results, compared to a uniform-random point. In
overall, CSA algorithm presents promising results for solving
large scale problems.

V. CONCLUDING REMARKS
The S-metaheuristic algorithms such as Simulated Anneal-

ing (SA) starts from one candidate-solution as the initial
starting point which usually is a uniformly generated ran-
dom point in the search space. Moreover, S-metaheuristic
algorithms are prone to get trapped in local optima on
difficult multi-modal landscapes. According to the Monte-
Carlo simulations the center point is a unique point at the
center of the search space which has a very high probability
of closeness to an unknown solution, comparing to a uniform
random point in the entire search space. The probability

of closeness increases as the dimensionality of a problem
increases. This paper, introduced Center-Point-Based Simu-
lated Annealing (CSA), which utilizes the center-point to
accelerate SA algorithm. For CSA algorithm, simply, we use
the center point of the search space, which is a unique point,
as the initial starting point for the SA algorithm; then the
original SA algorithm steps are executed. Although this is
a very simple idea, but it has shown to be effective and
better performing than its parent algorithm. The experimental
verifications carried out in this paper were on seven shifted
large-scale benchmark functions, for dimension of D=300.
The purpose of testing on shifted functions was to ensure
that there is no bias towards the center of the search space,
and that the optimum solution can be randomly placed
anywhere in the space. Since Center-point concept was
shown by other research as an exceptional feature for higher
dimensions, we decided to test CSA on large-scale problems.
The results verify that on four out of seven functions, CSA
outperforms SA, and for one of the functions, both SA and
CSA performed the same. Furthermore, the STD values of
CSA on all seven functions were much lower than those from
SA. This indicates that CSA has more consistency and less
fluctuation than SA. These positive results indicate that for
solving large-scale problems, CSA is the winner algorithm.

REFERENCES
[1] M. Ventresca, H.R. Tizhoosh, Simulated Annealing with Opposite

Neighbors, IEEE Symposium on Foundations of Computational In-
telligence (FOCI’07), Honolulu, pp. 186-192, 2007.

[2] H.R. Tizhoosh, Opposition-Based Learning: A New Scheme for
Machine Intelligence, Int. Conf. on Computational Intelligence for
Modelling Control and Automation (CIMCA’2005), Vienna, Austria,
Vol. I, pp. 695-701, 2005.

[3] Q. Ji-Yang, Application of Improved SimulatedAnnealing Algorithm
in Facility Layout Design, Proceedings of the 29th Chinese Control
Conference (CCC’10), Beijing, China, pp. 5224-5227, July 2010.

[4] W. Youhua, Y. Weili, Z. Guansheng, Adaptive Simulated Annealing
for the Optimal Design of Electromagnetic Devices, IEEE Transac-
tions On Magnetics, Berlin, Germany, Vol. 32, No. 3, pp. 1214-1217,
May 1996.

[5] Z. Xinchao, Simulated Annealing Algorithm With Adaptive Neigh-
borhood, Journal of Applied Soft Computing, In Press.

[6] E.-G. Talbi, ”Initial Population,” in METAHEURISTICS: FROM
DESIGN TO IMPLEMENTATION, Hoboken, New Jersey: John Wiley
& Sons, 2009, pp. 126-133.

[7] S. Kirkpatrick, C.D. Gelatt, M. P. Vecchi, Optimization by Simulated
Annealing: Quantitative Studies, Journal of Statistical Physics, Vol.
34, No. 5 and 6, pp. 975-986, 1984.

[8] V. Cerny, Thermodynamical Approach to the Traveling Salesman
Problem: An Efficient Simulation Algorithm, Journal Of Optimization
Theory And Applications, Vol. 45, No. 1, pp. 41-51, 1985.

[9] S. Rahnamayan, G. Gary Wang, Solving Large Scale Optimization
Problems by Opposition-Based Differential Evolution (ODE), World
Scientific and Engineering Academy and Society, Transactions on
Computers, Volume 7, Issue 10, Oct. 2008, pp. 1792-1804.

[10] K. Tang, X. Yao, P. N. Suganthan, C. Mac- Nish, Y. P. Chen, C. M.
Chen, Z. Yang, Benchmark Functions for the CEC2008 Special Ses-
sion and Competition on Large Scale Global Optimization, Technical
Report, Nature Inspired Computation and Applications Laboratory,
USTC, China, http://nical.ustc.edu.cn/cec08ss.php, 2007.

[11] S. Rahnamayan, G. Gary Wang, Center-Based Sampling for
Population-Based Algorithms, IEEE Congress on Evolutionary Com-
putation (CEC’09), pp. 933-938, May 2009.

[12] Yaochu Jin and Jürgen Branke, Evolutionary Optimization in Un-
certain Environments- A Survey, IEEE Transactions on Evolutionary
Computatioon, Vol. 9, No. 3, pp. 303-317, June 2005.

Administrator
Highlight

